
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

W911NF-13-1-0150

307-766-5424

Final Report

62547-EG.1

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

Parallel overset grid assembly techniques have recently been implemented in the U.S. Army Helios software for
rotorcraft aeromechanics simulations. The work presented in this report describes an innovative active load
balancing algorithm that improves the robustness and scalability of domain connectivity operations. Another aspect
of this works in to development of conservative overset grid methods. Preliminary results in 2-D for cell-centered
unstructured grid show feasibility of this approach and improvements in predictions when compared with

conventional overset grid approaches.

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

18-08-2014 1-May-2013 30-Apr-2016

Approved for Public Release; Distribution Unlimited

Final Report: Advanced Overset Grid Methods for Massively
Parallel Rotary Wing Computations

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

Comptuational Fluid Dynamics, Overset Grids, Parallel Computing

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Jayanarayanan Sitaraman

Jayanarayanan Sitaraman

611102

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

University of Wyoming
Box 3295
University Station
Laramie, WY 82071 -3295

ABSTRACT

Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

Final Report: Advanced Overset Grid Methods for Massively Parallel Rotary Wing Computations

Report Title

Parallel overset grid assembly techniques have recently been implemented in the U.S. Army Helios software for rotorcraft aeromechanics
simulations. The work presented in this report describes an innovative active load balancing algorithm that improves the robustness and
scalability of domain connectivity operations. Another aspect of this works in to development of conservative overset grid methods.
Preliminary results in 2-D for cell-centered unstructured grid show feasibility of this approach and improvements in predictions when
compared with

conventional overset grid approaches.

(a) Papers published in peer-reviewed journals (N/A for none)

Enter List of papers submitted or published that acknowledge ARO support from the start of
the project to the date of this printing. List the papers, including journal references, in the
following categories:

(b) Papers published in non-peer-reviewed journals (N/A for none)

(c) Presentations

Received Paper

TOTAL:

Received Paper

TOTAL:

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

Books

Number of Manuscripts:

0.00Number of Presentations:

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

(d) Manuscripts

Received Paper

TOTAL:

Received Paper

TOTAL:

Received Paper

TOTAL:

Received Book

TOTAL:

Patents Submitted

Patents Awarded

Awards

Graduate Students

Names of Post Doctorates

Names of Faculty Supported

Names of Under Graduate students supported

Received Book Chapter

TOTAL:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Discipline
Orhan Shibliyev 1.00
Phillip Davidson 0.50

1.50

2

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

National Academy Member
Jayanarayanan Sitaraman 0.17
Beatrice Roget 0.50

0.67

2

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Sub Contractors (DD882)

Names of Personnel receiving masters degrees

Names of personnel receiving PHDs

Names of other research staff

Inventions (DD882)

Scientific Progress

See attachment

Technology Transfer

Close interaction with Helios development team at Army Aeroflightdynamics directorate at NASA Ames

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):
Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for

Education, Research and Engineering:
The number of undergraduates funded by your agreement who graduated during this period and intend to work

for the Department of Defense
The number of undergraduates funded by your agreement who graduated during this period and will receive

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period:

0.00

0.00

0.00

0.00

0.00

0.00

0.00

The number of undergraduates funded by this agreement who graduated during this period with a degree in
science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue
to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:......

......

......

......

......

NAME

Total Number:

NAME

Total Number:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

......

......

Advanced Overset Grid Methods For Massively Parallel Rotary

Wing Computations

Final Report

Jayanarayanan Sitaraman1

1Department of Mechanical Engineering, University of Wyoming, Laramie, WY 82071, United States

Contents

1 Introduction 2

2 Problem Definition 5

3 Load rebalance algorithm 7
3.1 Problem definition . 7
3.2 Results . 10
3.3 Timing and Robustness Results . 10
3.4 Load re-balance and scalability Results . 11
3.5 Conclusions . 14

4 Conservative overset grid methods 16
4.1 Overset Mesh Technique . 16
4.2 Remeshing . 16
4.3 Unsteady Term of New Cells . 18
4.4 Validation . 18

4.4.1 Transonic Moving Airfoil . 18
4.4.2 Oscillating Airfoil . 20

4.5 Concluding Observations . 20

1

Chapter 1

Introduction

The use of Computational Fluid Dynamics (CFD) to simulate certain complex problems remains
challenging, for example when considering the flow around multiple moving bodies, deforming
bodies, or bodies with very complex geometries. This is because the traditional approach of using a
single grid to discretize the flow domain would require complex and problem-dependent operations
such as grid stretching and re-meshing. The overset (or Chimera) grid approach provides an
elegant solution to this problem by allowing the use of several overlapping meshes to discretize
different parts of the flow domain. However, the presence of overlap requires additional tasks to be
performed, such as determining whether the solution should be computed or interpolated at each
grid point, and which grid points (such as inside a solid body) should be ignored by the solver. This
problem as a whole is termed Overset Grid Assembly (OGA). Its solution can be quite challenging,
particularly when considering multiple unstructured meshes partitioned and distributed among
several processors. Point containment search, or donor search, which involves determining the cell
(or cells) that encompass a given query point, is the core algorithm that is required for the overset
grid assembly process. One of the prominent challenges, for partitioned meshes, is to design a robust
donor search algorithm that can account for the the complex geometry that is often generated at
the boundary of each mesh-block during partitioning. One of the most efficient algorithms for
donor search utilizes a line-walk process (variants are also called stencil-walk or stencil-jump). In
general, this algorithm entails selecting a seed cell in the neighborhood of the given query point
and then “walking” towards the point across the cell boundaries using the connectivity data of cell
neighbors. In Figure 1.1 a typical unstructured grid partition is shown where the complex nature
of the partition boundary can be clearly observed. Further, it is illustrated that the line walking
algorithm in its traditional form will incur robustness issues because of multiple exits and reentry
of the search-line through the partition boundary. One way to tackle this problem is to continue
the search-line across partitions and transfer control of the donor search to another processor that
controls the neighboring unstructured partition. However, such process would create asynchronous
parallel communication patterns that will affect the overall efficiency of the algorithm. To enable the
simulation of unsteady flow problems with relative motion and elasticity, the overset grid assembly
needs to be performed at each time step. Therefore, it is critical for the assembly process to be as
efficient as possible. In this context, the primary focus of this paper is to develop a donor search
algorithm that is efficient, uses only local data, and is sufficiently robust for handling the complex
geometrical nature of the partition boundaries.

Since the problem of Overset Grid Assembly was first introduced in the early eighties [23],
several grid assembly packages have become available. They include dedicated assembly codes
such as PEGASUS5 [24], SUGGAR++/DiRTlib [25], CHIMPS [26], and PUNDIT [27]. Other

2

Figure 1.1: Example of unstructured mesh-block partition illustrating a case of multiple exit/re-
entry points during line-walk based donor search.

assembly codes have been directly integrated within a specific solver, such as in OVERFLOW [29],
OVERFLOW-D [28], BEGGAR [30], FASTRAN [31], Overture [32], and ElsA [33]. All these codes
have their own specific merits and limitations. One prominent limitation is lack of modularity: many
of these codes are intended to be used within a single solver and cannot handle multiple solvers and
multiple mesh types simultaneously. Another common limitation is the inability to support mixed
mesh types (unstructured and structured). In addition, some codes are not implemented in parallel
and hence can not practically handle large scale problems. Further, often a different paradigm
for parallelism, such as maintaining the entire meshes in each process (coarse grain parallelism)
or using a different partitioning scheme (compared to solver based partitioning) for overset grid
assembly is utilized to simplify the overset grid assembly process. However, this would require
replicating and remapping the entire grid data causing both memory and execution efficiencies
that can become especially prominent in unsteady flow computations. Another limitation is the
lack of full automation, particularly for the task of removing invalid points inside solid walls (termed
hole-cutting), for which most codes require some amount of user input and expertise.

The present paper describes an overset grid assembly method that attempts to overcome the
above challenges, by developing efficient and robust algorithms to perform each sub-task of the
global parallel Overset Grid Assembly problem in a fully automated manner, requiring no user
input other than the partitioned mesh system itself, distinct body tags associating them to different
bodies and locations on the mesh system where the flow boundary conditions are to be applied.
It is to be emphasized that only local information, i.e. on a per process basis, is sought for
non-Cartesian meshes, with no requirement for any global mesh data of any kind. This method
is currently implemented in PUNDIT [27], which is the grid connectivity module of Helios [34],
the rotary-wing product of the CREATE-AV [35] and the HPC Institute for Advanced Rotorcraft

3

Modeling and Simulation (HI-ARMS) programs.
The paper is organized as follows: in the first chapter, the problem of Overset Grid Assembly

on a partitioned grid system is described, and the terminology used in the paper is defined. In
the second chapter, the proposed method is described, which consists of five steps: hole profiling,
mesh-block profiling, donor search, point type assignment, and finally interpolation. The problem of
parallel overset grid assembly is inherently imbalanced because of large differences in the amount of
work between different processes. The major contribution of this work is in developing a active load-
balancing capability that can mitigate this imbalance and improve the scalability and robustness
of the proposed method. The third chapter presents results of the load-reblance algorithm that
we have developed. Traditional overset grid methods are known to be non-conservative because of
problems with interpolation. We have recently developed and tested (in 2-D) conservative overset
method for cell-centered unstructured grid problems. The final chapter of this document delves on
this subject.

4

Chapter 2

Problem Definition

(a) Overlapping grids: all points (b) Receptor Points (solution interpolated)

(c) Hole Points (no solution) (d) Field Points (solution computed)

Mandatory

Receptor Points

Figure 2.1: Example of point types: Receptor points, Hole Points, and Field Points

Consider a mesh system composed of several types of meshes, e.g. unstructured, structured and
Cartesian meshes, that overlap each other. The entire mesh system is partitioned and distributed
such that each process, in general, owns few mesh-blocks (that could be of any or all types). The
Overset Grid Assembly (OGA) problem consists of processing this partitioned mesh system in a
parallel computing environment such that dominant meshes are identified in regions of overlap.
The final outcome is the identification of mutually exclusive regions in each mesh block, where, (a)
the flow field needs to be computed (b) the flow field needs to be interpolated from another grid
and (c) the flow field is invalid. Specifically, the primary task of the overset grid assembly module

5

consists of assigning to each mesh node (or mesh cell, if the solution variables are located at the
cell center), one of three point types, with the following properties:

1. Hole point (also termed blanked-out point): point at which no solution is computed.

2. Field point (also termed active point, or solver point): point at which the governing partial
differential equations are discretized and solved.

3. Receptor point (also termed interpolation point, or fringe point): point at which the solution
is interpolated from an overlapping cell (termed donor cell).

In order to establish the type of each grid point in an entirely automated manner, requiring no user
input other than the grid characteristics, the following definitions are used:

• Query Point:
point used in the flow solver to compute the flowfield (can be a node or cell-center depending
on the location of flow variables), and for which a point type is sought.

• Candidate donor cell (for query point P):
any cell (of any mesh other than the mesh P belongs to) which contains P.

• Donor cell (for query point P):
the cell with finest resolution (nominally quantified by the volume of the cell) among all
candidate donor cells for P.

• Hole Point:
query point located inside a solid body.

• Field Point:
query point which is not a hole point and either does not have a donor cell or has a donor
cell of coarser resolution than itself.

• Mandatory receptor point:
query point which is located within a certain number of cells (based on the breadth of the
stencil used in discretizing the governing equations) of either:

– an outer grid boundary node, or
– a hole point.

• Receptor point:
query point which is not a hole point and either is a mandatory receptor point or has a donor
cell of finer resolution than itself.

• Orphan point:
mandatory receptor point which does not find a donor cell (undesirable, the overset grid
assembler should create no such point).

The three different point types are illustrated in Figure 2.1, which shows two overlapping struc-
tured meshes (near-body since they conform to a no-slip wall boundary) and a Cartesian background
mesh (off-body since they are not body conforming) before and after domain connectivity process-
ing. Using the above set of definitions, field points are automatically selected such that there is
minimal overlap between the different grids (Figure 2.1(d)).

6

Chapter 3

Load rebalance algorithm

3.1 Problem definition

Figure 3.1: Hart-II mesh-blocks partitioning: blade detail.

For highly non-homogeneous meshes, the query points distribution among the mesh-blocks can
be very imbalanced. This is partly because the grid partitioning is typically done by maintaining
a constant number of cells per partition, leading to a large variation in mesh-block volume. A
large mesh-block overlapping several small mesh-blocks can get an undesirably large number of
query points, while a mesh-block without any overlap (or only background Cartesian mesh overlap)
will not get any query point. For example, Figure 3.1 shows a detail of the HART-II [41] region
where fuselage blade mesh-blocks overlap. It is clear that some fuselage mesh-blocks (with large
blade mesh-block overlap) will be overloaded, while others will have no load at all. The resulting
load imbalance can be alleviated using data exchange between the processors. A load re-balance
algorithm is designed, which operates as follows.

The first step is to estimate the load per processor. This load is measured as the total time
required to perform the connectivity task. When several mesh-blocks are assigned to a processor,
the loads per mesh-block are also measured. The average load among all processors, LA is then
computed.

7

Blade mesh-blocks

Partition 94 (bottleneck)

Sectional view

Figure 3.2: HART-II: bottleneck partition before load re-balance.

The next step is to perform the initial load re-balance. Exchange tables describing which
processor should transfer which fraction of its load to which processor(s) are determined in the
following iterative way: The most loaded processor (Pd, with load Lmax) transfers a load ∆L
to the least loaded processor (Pr, with load Lmin), until one of them reaches the average load:
∆L = min(Lmax − LA, LA − Lmin). The loads on both donor and receptor processors are then
updated accordingly and this is repeated until the load on each processor is within a small fraction
of the average (10% in the present study).

The resulting exchange tables describe the desired data transfer between processors. Actual
data transfer is between a mesh-block and a processor, so the tables are then transformed to
establish the exchange tables between mesh-blocks and processors, based on the stored mesh-block
loads: i.e. for each mesh-block, which fraction needs to be transferred to which processor. The
reverse list is also easily established: for each processor, which mesh-block(s) are sending data.

In order to partition the overloaded mesh-blocks into “sub-mesh-blocks” to be sent across to less
loaded processors, we assume that the load is directly proportional to the number of query points.
In other words, if a mesh-block must transfer x% of its load, it sends across x% of its query points
(along with the cells overlapping them). Note that this assumption can be inaccurate, because some
query points carry a smaller computational cost than others (for example, those having no true
overlap with cells, i.e. inside empty auxiliary grid sub-blocks). However, it is reasonable enough
to yield good initial re-balance results at the first iteration. In subsequent iterations, an adaptive
load-rebalance algorithm is applied to further correct the remaining load imbalance.

In order to efficiently determine which query points and cells to send across, each donor mesh-
block is pre-processed using a special type of auxiliary grid. This AG, similar to the one used
during the EIM donor search, has outer bounds corresponding to the oriented bounding box of
the query points, but it is only divided in the direction with the largest extent. The number of
sub-blocks is chosen equal to the number of query points. The list of query points per sub-block is
easily determined, then used to compute the levels at which the mesh-block should be partitioned

8

Sub-mesh block

retained on P 94

Sub-mesh blocks transferred

to other processors

Figure 3.3: HART-II: bottleneck partition after load re-balance.

to closely match the load specified in the data exchange tables. Once the sub-mesh-blocks are
identified, the list of cells per sub-mesh-block is determined. Finally, the data to be sent across
(query points and cells) is packaged into two arrays of real and integer numbers. Note that while
the ADT donor search method only requires query point and cell information, other methods such
as EIM require additional data such as cell neighbors, etc. For this reason, in the present work,
the load-rebalance algorithm is limited to the ADT method, and will later be extended to more
efficient donor search algorithms.

Processor-to-processor communication is performed using Message-Passing Interface routines.
In order to increase efficiency, only non-blocking communication is used. Additionally, donor pro-
cessors are made to check periodically for completion of their send requests in order to allow the
receptor processors to initiate their received task as early as possible. In this way, a donor proces-
sor posts its send request before immediately (while the data is being sent) starting to process its
remaining mesh-blocks (or fraction of mesh-blocks). A receptor processor first processes its own
mesh-blocks, then posts a receive request. As soon as the associated send request is completed, it
processes the received data and sends back the donor information, which is then received by the
donor processor and used to update its final list of donor cells.

The mesh-block re-partitioning process is illustrated using the HART-II [41] rotor-fuselage case
with 256 processors. Figure 3.2 shows two views of the bottleneck processor (P 94). It consists
of a single mesh-block, almost fully immersed inside the bounding box of all blade 1 mesh-blocks
(potential overlap with 19 mesh-blocks). After re-balance, as shown in Figure 3.3, it has been sliced
along the longest extent of its bounding box (along the blade) into 8 sub-mesh-blocks, each sent to
a different processor. Note that a mesh-block portion still remains assigned to processor 94.

After the initial load re-balance is complete, results can still be inadequate. This is in part
because, as mentioned earlier, not all query points carry the same computational cost. In addition,
new tasks have been introduced (determining new sub-partitioning, communication tasks), which
were not accounted for in the initial load measurements. In order to further improve load balance,
an adaptive algorithm is applied for the sub-sequent iterations. This algorithm uses the current
load measurements to correct the previous data exchange matrix, in the following way:

• The new load average is first computed (based on current measurements, i.e. reflecting

9

previous load-rebalance operations)

• The most loaded processor Pmax identifies the load (∆L) to transfer to the least loaded
processor Pmin so that one of them reaches the average.

– if Pmax was previously a donor processor (or inactive), and Pmin was a receptor processor
(or inactive), Pmax simply increases the load transferred to Pmin by ∆L.

– if Pmax was previously a donor processor (or inactive), but Pmin was also a donor pro-
cessor, two corrections are required:

∗ Pmax transfers the load to one or several of the receptors of Pmin

∗ Pmin transfers a correspondingly reduced load to these receptors

– if Pmin was previously a receptor processor (or inactive), but Pmax was also a receptor
processor, two corrections are required:

∗ One or several of the donors of Pmax transfers the load to Pmin

∗ Pmax receives a correspondingly reduced load from these donors

– if both Pmin and Pmax were of different types at the previous iteration (i.e. Pmax was a
receptor and Pmin was a donor), three corrections are required:

∗ One or several of the donors of Pmax transfer the load to one or several receptors of
Pmin

∗ Pmax receives a correspondingly reduced load from these donors
∗ Pmin transfers a correspondingly reduced load to these receptors

• This is repeated until all corrected loads are within a fraction of the average load.

This adaptive algorithm also allows the load-rebalance to remain applicable to moving/deforming
grid problems.

3.2 Results

Results of the Overset Grid Assembly task, in terms of total time, robustness, and scalability, are
obtained for two realistic application cases: the HART-II rotor-fuselage configuration [41], and a
generic wing-pylon-store configuration [42].

3.3 Timing and Robustness Results

The HART-II case, illustrated in Figure 3.4, consists of 5 near-body unstructured meshes (4 blades
and one fuselage). There is no off-body mesh, instead the fuselage mesh extends a large distance
away from the fuselage. The total number of nodes in all near-body meshes is 7 millions. Figure 3.4
also presents a detail of the meshes before and after connectivity (showing only the solver cells),
using the EIM method. It can be observed that only the most suitable cells from each mesh are
chosen for computation, automatically resulting in minimum overlap between the processed meshes.

This case is run on 256 processors, and the timing results are presented in Figure 3.5. In
this figure, timings corresponding to the main Overset Grid Assembly tasks are represented for
each processor in stacked bar plot format. The first task is hole profiling (HP). The second task
correspond to mesh-block profiling (MBP) and the third task is donor search (SRCH). The fourth
task corresponds to communication performed to identify the correct point types (Comm), and

10

HART-II case:

• 256 processors

• Near-body unstructured meshes:

4 blades, 1 fuselage

7 million nodes

Overset Grid Assembly:

Before After

Figure 3.4: HART-II rotor-fuselage case

finally the last task consists of computing the interpolation weight for all points identified as
receptor points (Interp).

Note that the hole profiling task accounts for a negligible fraction of the total OGA time. A
significant load imbalance is observed using both methods. The EIM is more efficient than the
ADT method, with a OGA time of 1.3 seconds (7% of the total time step time), compared to 2.6
seconds for the ADT method (14% of the total time). The connectivity results are verified to be
identical for both methods (same number of points of each type).

3.4 Load re-balance and scalability Results

Figure 3.6 shows results of the load rebalance algorithm when applied to the HART-II case. Task
durations are shown for the first three iterations (before load re-balance, after initial load re-balance,
and after first adaptive load re-balance). For clarity, only the mesh-block profiling and donor search
tasks are shown for iteration 1. For iterations 2 and 3, additional load re-balance tasks are included:

11

0 50 100 150 200 250

0

0.5

1

1.5

EIM

T
as

k
D

ur
at

io
n

(s
)

7%
 1.3 sec.

93%
 16.3 sec.

0 50 100 150 200 250

0

1

2

3

Processor ID

ADT

Interp

Comm

SRCH

MBP

HP

14%
 2.6 sec.

86%
 16.3 sec.

OGA

OBS

Figure 3.5: Timing results for the HART-II case using two different methods. Bar plots represent
the timing per processor for each OGA task and pie charts show the total time per iteration, split
into OGA, OBS (off-body solver) and NBS (near-body solver).

identification of data to transfer and donor update (over-loaded processors), and processing of the
received data (under-loaded processors). The task of computing the data exchange matrix (after
all processors complete their connectivity tasks) is also pictured (negligible time). After the initial
load-rebalance, the total time decreases from 2.1 sec to 0.7 sec (68% reduction), and futher decreases
to 0.5 sec after the third iteration (76% reduction). Figure 3.6 illustrates the efficiency of using non-
blocking communication: donor processors can process their own data immediately after identifying
the data to be transferred, and receptor processors process their own data before waiting a minimal
time to receive additional data. Figure 3.7 shows the variation of total time required to perform
the grid assembly before and after load re-balance, for different numbers of processors (32, 64 and
256). Some improvement in scalability is demonstrated using load re-balance, with a speed-up of
160 (instead of only 73) using 256 processors.

Finally, the scalability of the method is also tested using a Wind-Pylon-Store configuration
illustrated in Figure 3.8. This test case consists of 3 unstructured grids around a wing and two
stores, with a total of 15 million cells. Figure 3.8 shows the grids before and after connectivity,
including a detail around the wing-pylon-store region of overlap. The overset grid assembly task is
performed using 64, 128, 256 and 512 processors and timing results are shown in Figure 3.9. After
load re-balance, the total time is reduced by up to 80% (for 256 processors). The speed-up is also

12

0 50 100 150 200 250

0

1

2

3
Iteration 1

compute load re−balance

update donor cells

donor search (recvd data)

find data to transfer

donor search

mesh−block profiling

0 50 100 150 200 250

0

0.5

1

Iteration 2

T
as

k
D

ur
at

io
n

(s
)

0 50 100 150 200 250

0

0.5

1

Iteration 3

Processor ID

1 2 3
0

0.5

1

1.5

2

2.5

Iteration

Total time (s)

2.1

0.7
0.5

Figure 3.6: Task durations before load rebalance (iteration 1); after initial load rebalance (iteration
2); and after first adaptive load re-balance (iteration 3).

0 100 200 300
0

1

2

3

4

5

6

Number of processors

T
ot

al
 ti

m
e

(s
)

0 100 200 300
0

50

100

150

200

250

300

Number of processors

S
pe

ed
−

up

Before load re−balance

After load re−balance

Figure 3.7: HART-II case: time to perform OGA task before and after load re-balance.

improved, with a value of 213 using 256 processors (instead of 117 without load re-balance), however
the scalability remains significantly below the ideal linear trend, indicating further improvements

13

to the algorithm are required.

Before After

Overset Grid Assembly:

WPS case:WPS case:

3 unstructured meshes

(1 wing, 2 stores)

15 million cells

Figure 3.8: Wing-Pylon-Store case: connectivity results

3.5 Conclusions

This chapter presents a method to perform Overset Grid Assembly on a system of overlapping
unstructured meshes. These meshes are assumed to be partitioned into multiple mesh-blocks and
processed on multiple cores. The proposed OGA method uses structured, homogeneous auxiliary
grids to build exact inverse maps (EIM) that are used to speed up donor searches. This method is
general (can handle several mesh types), robust (no undesirable point is generated), fully automated
(only the meshes and solver information are required), and modular (can be integrated with multiple
solver). The proposed EIM method is compared with the Alternating Digital Tree (ADT) method
using the HART-II rotor-fuselage configuration as the main test case. A large load imbalance is
observed, reflecting the very imbalanced distribution of query points in the case of highly non-
homogeneous meshes. The proposed method is shown to be more efficient than the ADT method
(by a factor of 2 for the HART-II case), without loss of robustness (identical number of point types
identified). An adaptive load re-balance algorithm is described and tested, which demonstrates

14

0 200 400 600
0

5

10

15

20

T
ot

al
 ti

m
e

(s
)

Number of processors
0 200 400 600

0

100

200

300

400

500

600

S
pe

ed
−

up

Number of processors

Before load re−balance

After load re−balance

Figure 3.9: WPS case: time to perform OGA task before and after load re-balance.

improved efficiency (total time reduced by 76% for HART-II) and scalability (speed-up increased
from 117 to 213 using 256 processors for a wing-pylon-store test case). The re-balance algorithm
is at present implemented using the ADT method, and work is currently under way to extend it to
the more efficient EIM method.

15

Chapter 4

Conservative overset grid methods

One of the problems of the overset mesh techniques is the lack of conservation. The reasons are the
geometrical inconsistencies at the boundaries of the meshes to each other and the data transfer via
interpo- lation of variables within meshes. This problem becomes worse when the discontinuities
cross the intergrid boundaries. Furthermore, high order interpolation schemes causes numerical
oscillations near discontinuities such as shocks due to high gradients. It is possible to interpolate
uxes instead of conservative or primitive variables however, this approach is cumbersome and
limited to certain problems. Instead of using inter- polation schemes, the meshes could be united
by removing the intergrid elements and then remeshing to obtain a single mesh. By this way,
the method will become conservative automatically. This method has been successfully applied on
the node-centred unstructured meshes while in the present work cell-centred meshes will be used.
The main dierence between the present work and8 is that for node-centred meshes after remeshing
the number of variables remain the same while for the cell-centred meshes, at each time step,
new variables are introduced. Identication of the active and non-active regions are performed with
alternating digital trees which are also used for advancing front technique to remesh the overlapping
grid region. Two test cases, oscillating single airfoil and airfoil- ap conguration in relative motion
are used are used to validate the new method. Results are compared with the ones of traditional
overset method.

4.1 Overset Mesh Technique

Field, fringe, and the hole cells are identied with respect to the distances from the boundaries
to avoid cell islands. To speed up the process an alternating digital tree (adt) is used. For the
conventional overset grids method, variables are interpolated between the grids with second order
accuracy. This is the main problem of conventional method especially when a discontinuity such
as a shock crosses the overlapping region.

4.2 Remeshing

After the identication of the active and non-active cells, some of the cells are removed from the
grids leaving a blank region which is approximately twice the local mesh size. This blank region
is remeshed with advancing front technique which is boundary conforming. Meshing by using
only the existing points results in relatively greater volumes and possibly high aspect ratio cells,
hence new points are created where appropriate during the meshing process. Being a cell-centered
scheme after remeshing additional control volumes are created whereas in node-centered scheme,

16

Figure 4.1: Airfoil grid

only the congurations of the control volumes change without creating additional points which can
be considered as a downside of the cell-centered scheme. Having the blank region, each boundary
point’s and edge’s belongings are assigned with the grid number. This procedure is also applied to
the new points and edges. For example, some of the points and edges belong to grid 1 and some of
them to grid 2 whereas the new elements will belong to grid 3. These points and edges are stored in
a point and a front list which is sorted according to primarily the grid belongings and as a secondary
condition according to length of edges. So, the boundary edges have the priority to meshed rst
however, if two edges belong to the same grid then the smaller edge is meshed rst. Unless, there is
no other point in the radius of a candidate new point, that new point will be created. The radius
is the half of the average mesh size which is found by taking the average of all intergrid boundary
grid edges. The new point is created at average mesh size in normal direction to the center of the
edge. The direction of the normal is chosen so that the new triangle which is going to be formed
will be inside the domain and does not intersect with other edges and triangles. Created edges
and triangles are added to the front and triangle lists, respectively while the already used front list
member is removed from the front list which is sorted consequently. This procedure is repeated
until there is no edge lefts in the front list. If a new point cannot be created, the existing points
are used by searching for a closest point to either one of the terminals of the front list edge. If a
triangle can be formed with both of the closest points to the terminals then the closest point which
results in a smaller triangle is chosen. Once the new grid formed, the connection between the new
grid and the already existing grids are established.

17

Figure 4.2: Overset grids

4.3 Unsteady Term of New Cells

For the time-derivative term, the variables of the newly created cells at previous time levels should
be available. Since the rotation displacement is known, the corresponding cell at the previous time
level is found by an alternating digital tree and the previous time-level variables are interpolated
from that cell with second order accuracy using the gradients.

4.4 Validation

4.4.1 Transonic Moving Airfoil

To validate moving mesh algorithm and also see the consequences of using single grid, conventional
overset grids, and remeshed grid, the mentioned methods are tested with the case of moving airfoil
through stationary

uid at M = 0.8 and α= 1:25. The airfoil grid which is shown in Figure 1 has a radius of 30
chord length and consists of 2522 triangles while the side length of the square background mesh is
60 and has 2194 triangles. The overset grids after the identication of active and non-active cells are
shown in Figure 2. For the new method, the remeshed grid is shown in Figure 3. The overlapping
region is located where there is a shock present. This is done intentionally to show the superiority
of the remeshed grid over overset grids. The pressure coe cient variations on the airfoil are shown
in Figure 4 in which the single grid and the new method values are almost identical while the
conventional method results are clearly different. The sub-iteration convergences are presented in

18

Figure 4.3: The grid obtained after filling the blank region

Figure 4.4: Pressure coefficient distribution for transonic moving airfoil

19

Figure 4.5: Convergence of the flow solution for transonic moving airfoil

Figure 5. It is clear that the conventional method converges slower than the single grid method
and the new method.

4.4.2 Oscillating Airfoil

In addition to the first test case, together with translational motion, the airfoil mesh is also rotating.
The angle of attack of the airfoil is defined as:

α = α0 + αm(2kcMt)

where kc = 0.0814 is the reduced frequency, M=0.755, mean angle of attack α0=0.016, and am-
plitude is αm=2.51. Figures 8 to 13 show the density contours at various angle of attacks for
all new method. Lift coefficient vs angle of attack is shown in Figure 6, where the conservative
method can be observed to show good agreement with the single grid approach compared to the
conventional overset grid method. Figure 7 shows the density contours at different time levels of
oscillation for the three methods. Once again, it is evident that the flow field predicted by the
conservative method agrees better with the single grid method when compared with the traditional
overset method.

4.5 Concluding Observations

Preliminary investigation of the conservative overset grid methods in a cell centered context show
improved results when compared to conventional overset method. Work is expected to continue in

20

Figure 4.6: Lift coefficient w.r.t angle of attack for single mesh, conventional overset and conserva-
tive overset grid methods

this front to further develop the techniques and improve the quality of the results.

21

(a) α=0.32, single grid (b) α=1.70, single grid

(c) α=0.32, conventional overset (d) α=1.70, conventional overset

(e) α=0.32, conservative overset (f) α=1.70, conservative overset

Figure 4.7: Comparison of density contours obtained for the oscillating airfoil problem

22

Bibliography

[1] Steger, J.L., and Benek, J.A., “On the use of composite grid schemes in computational aerody-
namics”, Computer Methods in Applied Mechanics and Engineering, Vol.64, No. 1-3, October
1987, pp.301-320.

[2] Suhs, N., Rogers, S., Dietz, W.,“Pegasus 5: An automated pre-processor for overset-grid CFD”,
American Institute of Aeronautics and Astronautics 41(6), 10371045 (2003).

[3] Noack, R.W., Boger, D.A., Kunz, R.F., Carrica, P.M., “Suggar++: An improved general over-
set grid assembly capability”, Proceedings of the 47th AIAA Aerospace Science and Exhibit,
Orlando, FL (January 2009).

[4] Alonso, J. J., Hahn, S., Ham, F., Herrmann, M., Iaccarino, G., Kalitzin, G., LeGresley, P.,
Mattsson, K., Medic, G., Moin, P., Pitsch, H., Schluter, J., Svard, M., Van der Weide, E.,
You, D., and Wu, X., “CHIMPS: A High-Performance Scalable Module for Multi-Physics Sim-
ulations”, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA, Washington,
DC, July 2006.

[5] Sitaraman, J., Floros, M., Wissink, A., Potsdam, M. ”Parallel Domain Connectivity Algo-
rithm For Unsteady Flow Computations Using Overlapping And Adaptive Grids,” Journal of
Computational Physics, Volume 229, Issue 12, p. 4703-4723.

[6] Meakin, R.L., “Object X-Rays for Cutting Holes in Composite Overset Structured Grids,”
15th AIAA Computational Fluid Dynamics Conference, AIAA, Washington, DC, June 2001.

[7] Buning, P.G. and Pulliam, T.H., “Cartesian Off-body Adaptation For Viscous Time-Accurate
Flow Simulations”, AIAA Paper 2011-3693, 20th AIAA Computational Fluid Dynamics Con-
ference, June 27-30, 2011, Honolulu, Hawaii.

[8] Belk, D. M. and Maple, R. C., “Automated Assembly of Structured Grids for Moving Body
Problems”, 12th AIAA Computational Fluid Dynamics Conference, Part 1, AIAA, Washing-
ton, DC, June 1995, pp. 381390.

[9] Wang, Z. J., Parthasarathy, V., and Hariharan, N., “A Fully Automated Chimera Method-
ology for Multiple Moving Body Problems”, 36th AIAA Aerospace Sciences Meeting, AIAA,
Washington, DC, January 1998.

[10] David L. Brown, W. D. H. and Quinlan, D. J., “Overture: Object-Oriented Tools for Overset
Grid Applications”, 17th AIAA Conference on Applied Aerodynamics, AIAA, Washington,
DC, June 1999.

[11] JeanFaivre, G., Juvigny, X., and Benoit, C., “Parallel Chimera Computations of Helicopter
Flows”, 24th International Congress of the Aeronautical Sciences, ICAS 2004.

23

[12] Sankaran, V., Sitaraman, J., Wissink, A., Datta, A., Jayaraman, B., Potsdam, M., Mavriplis,
D., Yang, Z., O’Brien, D., Saberi, H., Cheng, R., Hariharan, N., and Strawn, R., “Application
of the Helios computational platform to rotorcraft Flowfields”, 48th AIAA Aerospace Sciences
Meeting Including the New Horizons forum and Aerospace Exposition, 4-7 January 2010,
Orlando, Florida.

[13] Post, D.E., “A new Dom initiative: the Computational Research and Engineering Acquisition
Tools and Environments (CREATE) program”, Journal of Physics, Conference Series 125,
2008.

[14] Zagaris, G., Campbell, M.T., Bodony, D.J., Shaffer, E. and Brandyberry, M.D., “A Toolkit
for Parallel Overset Grid Assembly Targeting Large-Scale Moving Body Aerodynamic Sim-
ulation”, Sandia National Laboratories, Proceedings of the 19th International Meshing
Roundtable, 2010, pp.385-401.

[15] Pissanetzky, S. and Basombrio, F.G., “Efficient Calculation of Numerical Values of a Poly-
hedral Function”, International Journal of Numerical Methods in Engineering, Vol.17, 1981,
pp.231-237.

[16] Khoshniat, M., Stuhne, G.R., and Steinman, D.A., “Relative Performance of Geometric Search
Algorithms for Interpolating Unstructured Mesh Data”, MICCAI 2003, 6th International Con-
ference on Medical Image Computing and Computer Assisted Intervention, Montreal, QC.

[17] Roget, B., and Sitaraman, J., “Wall Distance Search Algorithm Using Rasterized Marching
Spheres”, Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big
Island, Hawaii, July 9-13, 2012.

[18] Bonet, J., and Peraire, J., “An Alternating Digital Tree (ADT) Algorithm for 3D geometric
searching and intersection problems”, International Journal of Numerical Methods in Engi-
neering, Vol 31, 1991, pp.1-17.1

[19] Sitaraman, J., Potsdam, M., Jayaraman, B., Datta, A., Wissink, A., Mavriplis, D. and
Saberi, H.,”Rotor Loads Prediction Using HELIOS : A Multi-Solver Framework For Rotorcraft
CFD/CSD Analysis” AIAA 2011-1123, 49th AIAA Aerospace Sciences Meeting, 4-7 January
2011, Orlando, Florida.

[20] Wissink, A., Kamkar, S., Pulliam, T. H., Sitaraman, J. and Sankaran, V.,”Cartesian Adaptive
Mesh Refinement For Rotorcraft Wake Resolution,” Presented at the 67th Forum of American
Helicopter Society, Phoenix Arizona, May 2010.

[21] Wissink, A., Jayaraman, B., Potsdam, M., Dimanglig, A. and Lim, J., “Helios Prediction of
Blade-Vortex Interaction and Wake of the HART II Rotor,” AIAA 2012-714, Presented at the
50th AIAA Aerospace Sciences Meeting, January 2012, Orlando, Florida.

[22] Wissink, A., Jayaraman, B., Datta, A., Sitaraman, J., Potsdam, M., Kamkar, S., Mavriplis, D.,
Yang, Z., Jain, R., Lim, J., Strawn, R., “Capability Enhancements in Version 3 of the Helios
High-Fidelity Rotorcraft Simulation Code”, AIAA-2012-713, 50th AIAA Aerospace Sciences
Meeting, Nashville TN, Jan 9-12 2012.

[23] Steger, J.L., and Benek, J.A., “On the use of composite grid schemes in computational aerody-
namics”, Computer Methods in Applied Mechanics and Engineering, Vol.64, No. 1-3, October
1987, pp.301-320.

24

[24] Suhs, N., Rogers, S., Dietz, W.,“Pegasus 5: An automated pre-processor for overset-grid CFD”,
American Institute of Aeronautics and Astronautics 41(6), 10371045 (2003).

[25] Noack, R.W., Boger, D.A., Kunz, R.F., Carrica, P.M., “Suggar++: An improved general over-
set grid assembly capability”, Proceedings of the 47th AIAA Aerospace Science and Exhibit,
Orlando, FL (January 2009).

[26] Alonso, J. J., Hahn, S., Ham, F., Herrmann, M., Iaccarino, G., Kalitzin, G., LeGresley, P.,
Mattsson, K., Medic, G., Moin, P., Pitsch, H., Schluter, J., Svard, M., Van der Weide, E.,
You, D., and Wu, X., “CHIMPS: A High-Performance Scalable Module for Multi-Physics Sim-
ulations”, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA, Washington,
DC, July 2006.

[27] Sitaraman, J., Floros, M., Wissink, A., Potsdam, M. ”Parallel Domain Connectivity Algo-
rithm For Unsteady Flow Computations Using Overlapping And Adaptive Grids,” Journal of
Computational Physics, Volume 229, Issue 12, p. 4703-4723.

[28] Meakin, R.L., “Object X-Rays for Cutting Holes in Composite Overset Structured Grids,”
15th AIAA Computational Fluid Dynamics Conference, AIAA, Washington, DC, June 2001.

[29] Buning, P.G. and Pulliam, T.H., “Cartesian Off-body Adaptation For Viscous Time-Accurate
Flow Simulations”, AIAA Paper 2011-3693, 20th AIAA Computational Fluid Dynamics Con-
ference, June 27-30, 2011, Honolulu, Hawaii.

[30] Belk, D. M. and Maple, R. C., “Automated Assembly of Structured Grids for Moving Body
Problems”, 12th AIAA Computational Fluid Dynamics Conference, Part 1, AIAA, Washing-
ton, DC, June 1995, pp. 381390.

[31] Wang, Z. J., Parthasarathy, V., and Hariharan, N., “A Fully Automated Chimera Method-
ology for Multiple Moving Body Problems”, 36th AIAA Aerospace Sciences Meeting, AIAA,
Washington, DC, January 1998.

[32] David L. Brown, W. D. H. and Quinlan, D. J., “Overture: Object-Oriented Tools for Overset
Grid Applications”, 17th AIAA Conference on Applied Aerodynamics, AIAA, Washington,
DC, June 1999.

[33] JeanFaivre, G., Juvigny, X., and Benoit, C., “Parallel Chimera Computations of Helicopter
Flows”, 24th International Congress of the Aeronautical Sciences, ICAS 2004.

[34] Sankaran, V., Sitaraman, J., Wissink, A., Datta, A., Jayaraman, B., Potsdam, M., Mavriplis,
D., Yang, Z., O’Brien, D., Saberi, H., Cheng, R., Hariharan, N., and Strawn, R., “Application
of the Helios computational platform to rotorcraft Flowfields”, 48th AIAA Aerospace Sciences
Meeting Including the New Horizons forum and Aerospace Exposition, 4-7 January 2010,
Orlando, Florida.

[35] Post, D.E., “A new Dom initiative: the Computational Research and Engineering Acquisition
Tools and Environments (CREATE) program”, Journal of Physics, Conference Series 125,
2008.

[36] Zagaris, G., Campbell, M.T., Bodony, D.J., Shaffer, E. and Brandyberry, M.D., “A Toolkit
for Parallel Overset Grid Assembly Targeting Large-Scale Moving Body Aerodynamic Sim-
ulation”, Sandia National Laboratories, Proceedings of the 19th International Meshing
Roundtable, 2010, pp.385-401.

25

[37] Pissanetzky, S. and Basombrio, F.G., “Efficient Calculation of Numerical Values of a Poly-
hedral Function”, International Journal of Numerical Methods in Engineering, Vol.17, 1981,
pp.231-237.

[38] Khoshniat, M., Stuhne, G.R., and Steinman, D.A., “Relative Performance of Geometric Search
Algorithms for Interpolating Unstructured Mesh Data”, MICCAI 2003, 6th International Con-
ference on Medical Image Computing and Computer Assisted Intervention, Montreal, QC.

[39] Roget, B., and Sitaraman, J., “Wall Distance Search Algorithm Using Rasterized Marching
Spheres”, Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big
Island, Hawaii, July 9-13, 2012.

[40] Bonet, J., and Peraire, J., “An Alternating Digital Tree (ADT) Algorithm for 3D geometric
searching and intersection problems”, International Journal of Numerical Methods in Engi-
neering, Vol 31, 1991, pp.1-17.

[41] van der Wall, B.G., Burley, C.L., Yu, Y., Richard H., Pengel K., and Beaumier, P., “The
HART II Test - Measurement of Helicopter Rotor Wakes” Aerospace Science and Technology
8(2004):273-284.

[42] Morton, S.A., Lamberson, S.E., and McDaniel, D.R., “Static and Dynamic Aeroelastic Simula-
tions using Kestrel - a CREATE Aircraft Simulation Tool”, 53rd AIAA Structures, Structural
Dynamics and Materials Conference, 23-26 April 2012, Honolulu, Hawaii.

[43] Message Passing Interface http://www.mcs.anl.gov/research/projects/mpich2/

[44] Python Programming Language – Official Website http://www.python.org/

[45] Numerical python http://www.numpy.org/

[46] P. Peterson F2PY: Fortran to Python interface generator http://cens.ioc.ee/projects/f2py2e/

[47] L. Dalcin MPI for Python http://mpi4py.scipy.org/

26

